

Ortho Clinical Diagnostics

Because Every Test Is A Life™

Ortho Enabling Technology

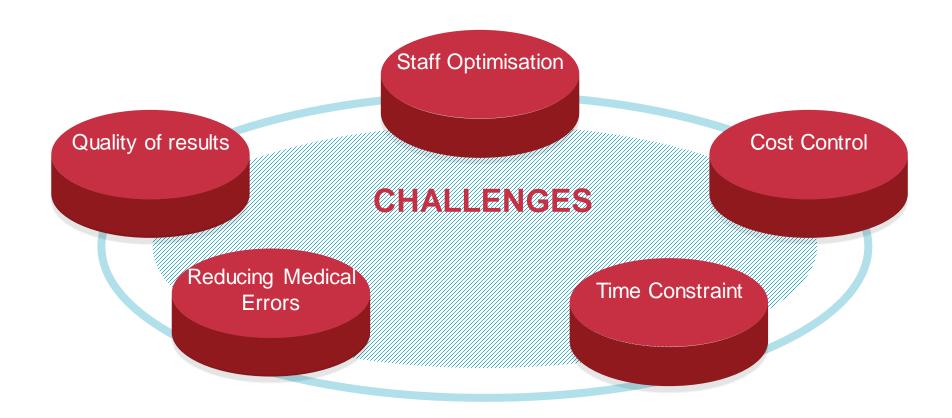
Dec 10th, 2021 Dogy Valian

Ortho Clinical Diagnostics

Because Every Test Is A Life™

Importance of Result Consistency

Patient Management & Challenges


Role of the Lab in Patient Management

The Lab provides the information required for the delivery of precise healthcare

- ✓ 70% medical decisions are based on lab reports while IVD Healthcare Expenditure is around 2%
- ✓ Tests screen for, diagnose, and prevent disease
- ✓ Provide critical data needed to select proper treatment
- ✓ Evaluate the effectiveness of treatment
- ✓ A large percentage of health care decisions, from diagnosis through therapy and prognosis, are derived from clinical laboratory tests.

Today's Labs Face Challenges at Every Turn

Managing Lab Operations

Labs Also Need to Cater to STAT Requests!

Dynamic Lab Environment

- Emergency Department
- Intensive Care (ICU)
- Neonatal ICU (NICU)
- Cardiovascular ICU (CICU)
- Coronary Care Unit (CCU)
- Surgical Department
- Trauma Wards

Laboratory Key Challenges for STAT Tests

Patient Results

Quality

No time for sample quality and quantity inspection

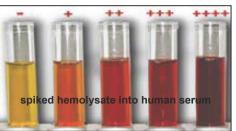
Zero error tolerance especially those critical tests.

For example: Electrolytes, BMP, CMP

Efficiency

TAT pressure from physicians – Emergency, Adult & Neonatal ICU, High Dependent Unit, Cardiac Care Unit and Surgical Department

No time waiting for repeat testing and redraw samples


Ease of Use

Labor shortage especially skilled manpower

Less maintenance and downtime

Less calibration and QC needs

True random access

Ortho Clinical Diagnostics

Because Every Test Is A Life™

Quality Indicators & Challenges for Lab

Patient Management & Challenges

Quality Indicators

Lab Performance

- Qls are tools that support objective monitoring of errors and form an integral component of a laboratory's quality management program.
- Good approach to prioritizing Qls specific to a laboratory's unique setting is to conduct a risk assessment that identifies sources of error within testing processes.
- In the United States, laboratories are required to assess quality performance throughout the total testing process (pre-analytic, analytic, post-analytic).

https://www.aacc.org/publications/cln/articles/2016/february/choosing-and-retiring-quality-indicators

Sources of Lab Errors

Quality improvement

- It is well published that most errors occur in the pre- and post-analytical phases
- Not processing a specimen properly prior to analysis or substances interfering with assay performance can affect test results in the analytical phase.
- Implementation of a Total Quality Management (TQM) system is the most effective strategy to minimize uncertainty in laboratory diagnostics.
 - preventing adverse events (error prevention),
 - making them visible (error detection),
 - mitigating their adverse consequences when they occur (error management)

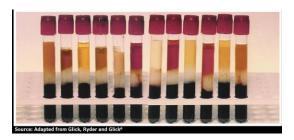
Phase of Total Testing Process	Type of Error	Rates
Pre-analytical	Inappropriate test request Order entry errors Misidentification of patient Container inappropriate Sample collection and transport inadequate Inadequate sample/anticoagulant volume ratio Insufficient sample volume Sorting and routing errors Labeling errors	46%-68.2%
Analytical	Equipment malfunction Sample mix-ups/interference Undetected failure in quality control Procedure not followed	7%-13%
Post-analytical	Failure in reporting Erroneous validation of analytical data Improper data entry	18.5%-47%

Ref - A Review of Medical Errors in Laboratory Diagnostics and Where We Are Today; February/March 2012 ■ Volume 43 Number 2 ■ LABMEDICINE

Analytical Errors

What Impacts Quality

- Instrument malfunctioning
- Lack of specificity of the testing methodology
- WATER QUALITY
- Interfering substances Paraproteins, drugs etc.
- Sample quality/ Serum Indices (HIL)
 - ✓ Hemolysis
 - ✓ Icterus
 - ✓ Lipemia


Sample quality- Assays Affected by HIL

Larger Impact on Critical Care

Common biochemical tests affected by hemolysed sample		
Increased	Decreased	
Potassium (K+)	Haptoglobin	
Lactate Dehydrogenase (LDH)	Bilirubin	
SGOT/AST	Amylase	
SGPT/ALT	Bicarbonate (HCO ₃ –)	
Creatine Kinase (CK)		
Iron		
Phosphate (PO4–)		
Total Protein		
Albumin		
Magnesium (Mg++)		
Calcium (Ca++)		
Alkaline Phosphatase (ALP)		

Common biochemical tests affected by lipemic sample

Increased	Decreased
Total Bilirubin	Sodium (Na+)
Direct Bilirubin (BuBc)	Potassium (K+)
TIBC	Chloride (CI-)
Magnesium (Mg++)	Bicarbonate (HCO ₃ -)
	Lactate Dehydrogenase (LDH)

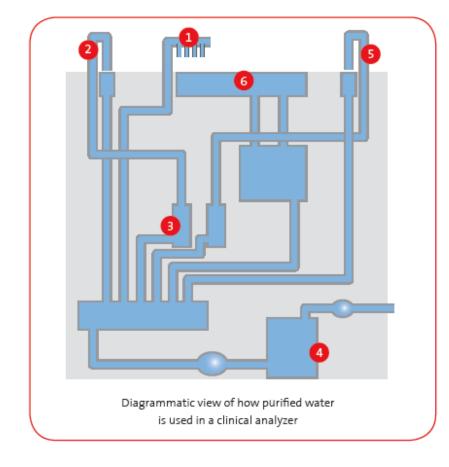
Common biochemical tests affected by icteric sample

Increased	Decreased
Magnesium (Mg++)	Cholesterol
	Triglyceride
	Creatinine
	Total Protein
	Uric Acid
	GGT

Challenges with electrolyte measurements

Direct ISE Vs Indirect ISE

- Electrolyte disorders are common in hospital populations across a broad spectrum of patients (from asymptomatic to critically ill) and associated with increased morbidity and mortality
- The incidence of electrolyte disorders is nearly 25% in ICU patients where serum sodium and potassium levels are significant predictors of mortality.
- Prompt and complete correction of electrolyte disorders in ICU patients is vitally important which requires rapid TAT and accuracy.
- Hemolysis which is common in hospitalized/ED patients impacts electrolyte results.
- Inaccuracies in electrolyte values are common in patients with abnormal levels of lipids and proteins. Abnormal levels of lipids and proteins are commonly seen in –
 - Patients with Diabetes Mellitus
 - Critically ill and ICU patients
 - Oncology patients
 - Obesity with hypertriglyceridemia and/hypercholesterolemia


Direct ISE is highly recommended over indirect ISE in such cases. However, most of the high throughput auto-analyzers offer indirect ISE for electrolyte measurement. 1,2

Water Issues: Role of Water in Clinical Chemistry Analyser

Critical in performance

- Cuvette wash station
 Consistent high quality water for effective cuvette washing, eliminating carry over and contamination
- 2 Sample probe and wash station Consistent high quality water increases calibration stability and eliminates sample to sample cross contamination
- Pipetting Syringes
 High quality particle free water for more accurate and precise pipetting of both sample and reagent

Figure 1: Uses of Pure Water

- 4 Internal reservoir

 UV and 0.2 micron filter for bacterial and particle control, reducing bacterial contamination
- 5 Reagent probe and wash station

 Consistent high quality and bacterial free water delivers longer reagent stability and eliminates reagent to reagent contamination
- 6 Incubator bath

 Bacteria and particle free water for accurate and precise photometric readings

Pure Water for the Modern Clinical Laboratory; www.elgalabwater.com

Common Assays Affected by Water Quality

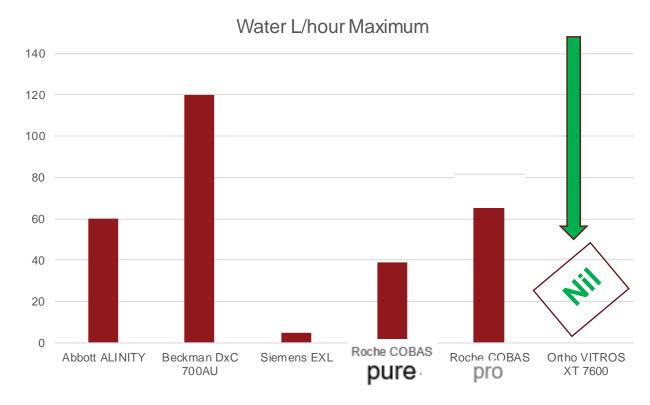
Performance Impact

Clinical Test	Interferent present in water	Water purity parameter affected
Total Calcium	Oxalate,	Resistivity, TOC
	Sulphate, Calcium	Resistivity
Alkaline Phosphatase	Fluoride, Phosphate, Zinc	Resistivity
	Manganese, Arsenate	Resistivity
	EDTA	Resistivity, TOC
	Bacteria	TVC
	Endotoxin	Endotoxin
Creatine Kinase (CK)	Oxidizing agents	Resistivity, TOC
Amylase	Oxalate, Citrate and EDTA	Resistivity, TOC
Lactate Dehydrogenase	Urea	TOC
Phosphorous	Citrate and Oxalate	Resistivity, TOC
Urea Nitrogen	Citrate	Resistivity, TOC
Iron	EDTA, Oxalate	Resistivity, TOC
	Fluoride	Resistivity
Triglycerides	Glycerol	TOC
LDH	Hydrogen Peroxide	(Resistivity) Specific test
Peroxidase-based reactions	Hydrogen Peroxide	(Resistivity) Specific test

Table 2: Examples of Chemical Interferences

Pure Water for the Modern Clinical Laboratory; www.elgalabwater.com

Productivity for Today and Tomorrow


Emergency Preparedness

No distilled water costs/contamination

See the following for documentation:

- The Critical Role of Water Quality in Lab Performance
- ELGA PURE LABWATER Guide
- CLSI Guideline GP 40: Preparation and Testing of Reagent Water in the Clinical Laboratory

JCAHO regulations EC4.11-EC 4.20 states that a hospital must have a plan for the first 96 hours of an emergency. To serve your patient population in emergencies and maintain ER services at your hospital lab must be operational, including full availability of your water system.

Ortho Clinical Diagnostics

Because Every Test Is A Life™

Technological Advancements To Ensure Lab Performance

Eliminating Errors

VITROS® Systems are built on proven & proprietary technologies& enhance these technologies

MicroSlide

Digital detection enables commonly requested tests to be paired on ONE slide, while maintaining the proven quality and accuracy of our proprietary dry slide technology.

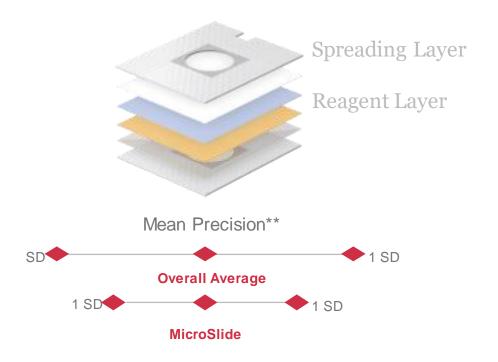
MicroWell

MicroTip

MicroSensor

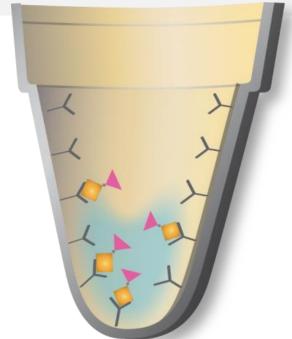
Intellicheck®

Digital detection deliver benefits to our other technologies, and helps make the VITROS® XT System** more:


- Productive***
- Efficient ***
- Reliable****

VITROS® MicroSlide: delivering trusted chemistry results

Spreading layer traps selected interferences*


- Spreads the sample uniformly
- · Acts as a reflective surface during reading
- Can minimize interference from endogenous substances such as lipids, bilirubin, hemoglobin and drugs

VITROS® MicroWell: Exceptional immunoassay precision and accuracy* on VITROS® XT 5600 Integrated System

- Excellent assay sensitivity and precision
- Capability for small sample volumes
- Minimal waste
- Include Enhanced Chemiluminescence Detection
 - Improved light signal output, even at low analyte concentrations, for better detection*
 - Broad dynamic range

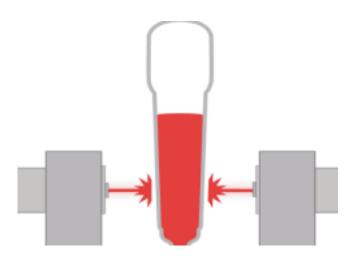
^{*} Compared to direct and other indirect chemiluminescence methods

^{1.} Summers M, Booth T, Brockas H, et al. Luminogenic reagent using 3-chloro 4-hydroxy acetanilide to enhance perioxidase/luminol chemiluminescence. Clin Chem. 1995;41.S73.

^{2.} Thorpe GH, Kricka LJ, Moseley SB, Whitehead P. Phenols as enhancers of the chemiluminescent horseradish peroxidase-luminol-hydrogen peroxide reaction: application in luminescence-monitored enzyme immunoassays. Clin Chem. 1985;31(8):1335-1341.

^{**}Product not available for sale in all countries.

VITROS® MicroTip: providing high quality results in diverse patient settings* on VITROS® 5600 Integrated System***


- Liquid, ready-to-use reagents no preparation**
- Refrigerated storage maximizes on-system stability
- Reagent packs are automatically opened and closed
 - Limits contamination, evaporation, and reagent crosscontamination or carryover
 - Enhances reagent and calibration stability

VITROS® MicroSensor: Detects endogenous interferences*

- · Fiber-optic wavelength scan of sample
- Detects and flags results affected by hemolysis, icterus, and turbidity
- No reagent or additional sample volume requirements
- Analysis time of <1 second
- No impact on system workflow or result turnaround time*

Cost-effective reporting without impacting workflow

VITROS® INTELLICHECK®: Accurate and efficient result reporting

- IntelliReport[™] provides full traceability, operator notification, and real-time exception documentation
- SMART Metering featuring single-use tips and Save-the-Sample Clot Detection Management and bubble detection to avoid reporting erroneous interferences
- Integrated process control that verifies the integrity of the sample processed and results reported
- VITROS[®] Intellicheck outputs MicroSensor results in report

Proprietary technology provides unique results integrity

Metering

- VersaTip eliminates carryover
- No fixed probes No probe maintenance
- Pressure transducer ensures sample & result integrity
- Save-the-Sample Clot Management
- Deep tube sampling

24 Ortho Clinical Diagnostics

VITROS® Integrated Immunoassay and Chemistry Systems addressing laboratory testing needs

Efficiency

Solutions that meet your operational and cost efficiency objectives

Confidence

Confidence in the accuracy and treatment impact of results you deliver

Reliability

A system you can rely on to be ready to deliver accurate results when you need them

Ownership

Fully supported and worry free

VITROS® XT 7600 Integrated System

VITROS® 5600 Integrated System

VITROS® 3600 Immunodiagnostic System

VITROS® 4600 Chemistry System

VITROS® XT 3400 Chemistry System

Superior Reagent Efficiency

96% Efficiency incl. ISEs, consumables

96.5% Other items

(Calibration - 0.1%, Q.C. - 2.9%. Re-test-0.5%)

Low Sample Volume

MicroSlide : $2.7 \sim 11 \mu l$ MicroWell: $10 \sim 80 \mu l$ MicroTip : $2 \sim 16.7 \mu L$

Short TAT

ISE s: ~ 2.5Min / Routines: ~ 5Min

Special Proteins : ~ 9Min

MicroTips:~8-16Min

Ortho Clinical Diagnostics

Technology harnessed

Smart automation: driving your workflow efficiency

The key characteristics of VITROS® Automation Solutions:

The VITROS® Systems enhance our smart automation offering by increasing possible configurations and possibly reducing capital requirements, which:

- Relieve the pressure on your staff
- Make efficiency gains throughout the lab
- Focus on the tasks where you make your impact

The total solution

Ortho Clinical Diagnostics

The total solution

Ortho Care™: The value of service

Clinical Chemistry Assays

Ortho Assays

Sr. No.	LFT
1	ALT
2	AST
3	ALP
4	Albumin
5	Total Protein
6	Bilirubin Total
7	Bilirubin Direct
8	GGT
9	LDH

Sr. No.	KFT
10	Urea
11	Calcium
12	Creatinine
	Chloride
	Sodium
	Potassium

Sr. No.	Lipids
13	Tg
14	Chol
15	HDL
16	LDL
17	APO A1
18	APO B
19	LPa

74 Assays

Sr. No.	Others Routine
20	Glucose
21	HbA1c
22	Iron
23	MG
24	Phosphorus
25	TIBC/UIBC
26	Uric Acid
27	CRP
28	RF
29	Amylase
30	Cholinesterase
31	CK-NAC
32	CK-MB
33	Lipase
34	Micro Albumin
35	Micro Protien
36	D Dimer
37	Lactate
38	Ammonia
39	Hs CRP
40	CO2 (Bicarbonate)

Sr.	
No.	Others 2
41	Carbamazepine
42	Phenobarbital
43	Valproic Acid
44	Lithium
45	ASO
46	C3
47	C4
48	IgA
49	IgG
50	IgM
51	Transferrin
52	Lithium (Li)

Cr No	Others 2
	Others 3
53	Alpha-1-Antitrypsin (AAT)
54	Haptoglobin (HPT)
55	Prealbumin (pALB)
56	Amphetamine (AMPH)
57	Barbiturates (BARB)
58	Benzodiazepines (BENZ)
59	Cannabinoid (THC)
60	Cocaine Metabolite (COCM)
61	Methadone (METD)
62	Opiate (OP)
63	Phencyclidine (PCP)
64	Caffeine (CAFFN)
65	Gentamicin (GENT)
66	Tobramycin (TOBRA)
67	Vancomycin (VANC)
68	Acetaminophen (ACET)
69	Digoxin (DIGXN)
70	Phenytoin (PHYT)
71	Salicylate (SALI)
72	Theophylline (THEO)
73	Theophylline (THEO)
74	Phenobarbital (PHBR)

Business confidential. For internal use only.

Immuno Assays

Ortho Assays

THYROID
Free T3 (FT3)
Free T4 (FT4)
T3 Uptake (T3U)
Total T3 (TT3)
Total T4 (TT4)
TSH
Intact PTH (iPTH)

Procalcitonin (PCT)

Myoglobin (MYOG)

NT-ProBNP II (NTBNP)

Troponin I ES (TROPI)

REPRODUCTIVE **ENDOCRINOLOGY** AFP Estradiol (E2) FSH LH Progesterone (PROG) Prolactin (PROL) Testosterone (TESTO) Total ß-hCG II (B-hCG)

ANAEMIA Ferritin (FERR) Folate 1/2 (FOL)

BONE NTx 25-OH Vitamin D (tVITD)

Red Cell Folate (RCFOL)

Vitamin B12 1/2 (B12)

Vitamin B12/Folate 3

ONCOLOGY CA 125 II™ (CA125) CA 15-3™ (CA15-3) CA 9-9™ (CA19-9) CEA Total PSA II (tPSA) Free PSA (fPSA)

DIABETES	
Insulin (INS)	
C-Peptide (C-PEP)	

OTHER TESTS Anti HAV IgM (HAVM) Anti-HAV Total (HAVT) Anti-HBc (aHBc) Anti-HBc IgM (HBcM) Anti-HBe (aHBe) Anti-HBs (aHBs) Anti-HCV (aHCV) Anti-HIV 1+2 (aHIV) HIV Combo (HIVc) CMV IgG (CMVG) CMV IgM (CMVM) HBeAg HBsAg HBsAg ES (HBsAg) HBsAg ES Confirmatory Kit (HBCon) Rubella IgG (RUBG) Rubella IgM (RUBM) Syphilis TPS (SYPH) Toxoplasma IgG (TOXG) Toxoplasma IgM (TOXM) Anti-SARS-Cov-2 IgG Anti-SARS-Cov-2 IgG Version 2 Anti-SARS-CoV-2 Total Anti-SARS-CoV-2 Total Version 2

64 Assays

RENAL

SEPSIS

CARDIAC

CK-MB

Nephrocheck (TIMP-2 & IGFBP-7) (NCHECK)

High-Sensitive Troponin I (hsTROPI)

SARS-CoV-2 Antigen

Ortho Clinical Diagnostics

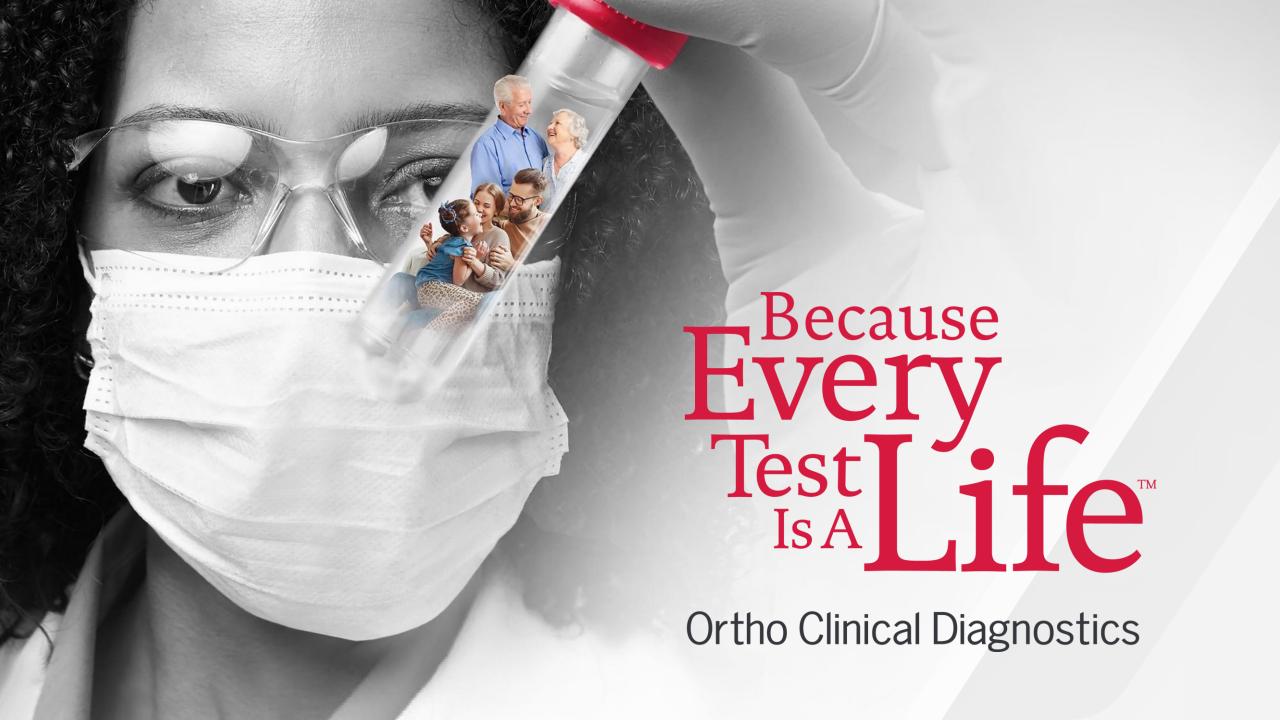
Because Every Test Is A Life™

Commercial Efficiency

Commercial Efficiency

Understanding of cost

- Tangible Costs
 - Labour cost Evaluation of labor cost for non-value-added activity
 - Cost of space Bigger footprint of analyzer and space required for water plant, water tank, plumbing, drainage and other accessories
 - Cost of reagents and consumables Calculation of all the items required to run a test, it's beyond only reagent
 - Cost of water and biomedical waste management Cost of water, purification system, plumbing, water and biomedical waste management


Intangible Costs –

- Cost of Non-productive time of analyzer During maintenance, Breakdown, Service, Calibration, QC, Stand by etc.
- Cost of TAT impact FPY and 24/7 analyzer availability
- Result Quality Impact of a wrong result or % of tests require review, repeat, rerun etc.

Commercial effectiveness

Ortho's unique capability

- Industry leading First Pass Yield (FPY) Higher 1st time reportable result ensure lower manual intervention, reruns, repeats and improve productivity
- Reagent efficiency: Industry leading Reagent efficiency
- Pack-size: Smaller pack-size ensure minimal wastage and more tests can be performed in-house without wastage
- Excellent calibration stability maximum utilization of reagents for patient sample testing
- **Higher on-board stability of the reagents** Utilization without wastage specially for IA parameters
- Analyzer time for patient sample testing
 — Low maintenance, no standby time, less time spend for calibration, more assay on board etc. ensure better availability of analyzer for patient sample testing
- Manpower utilization Less time spend of skilled manpower on analyzer maintenance, water quality check, calibration, troubleshooting on results require review etc.

Ortho Clinical Diagnostics

Because Every Test Is A Life™

Distributed by:

PT. TriPutra Aman Makmur Infinity Building Lt.2 Jl. Raya Kebayoran Lama No.338 Jakarta Selatan

CP: Elisabeth +62 81294487757